- 已编辑
leonanor 你可以按照这篇操作检查下cpu指令集包含相关flags。https://blog.csdn.net/janbox/article/details/103737406
leonanor 你可以按照这篇操作检查下cpu指令集包含相关flags。https://blog.csdn.net/janbox/article/details/103737406
在esxi6.7上,虚拟机OS由centos7.6换成ubuntu18.04部署成功。几个坑:
1、要在esxi6.7选择某个work角色的虚拟机做gpu直通。在虚拟机高级设置中添加hypervisor.cpuid.v0=FALSE
2、直通设置完成后ubuntu启动不了。在“x86:booting smp configuration….”处挂住。这时要在虚拟机升级intelcpu的微码。
sudo dpkg -l|grep intel
sudo apt-get purge intel-microcode
sudo update-grub
sudo reboot
升级后重启ubuntu可以正常启动了。
3、在线升级可能会超时。要下载镜像特别多。最好翻墙先下载好需要的镜像。先用helm fetch nvidia/gpu-operator 下载压缩包,解压后进去文件夹打开 values.yaml找到镜像名称下载。如果翻墙机器不是在设置了gpu直通的k8s机器,docker save -o 导出这些镜像然后docker load 导入镜像。
下载的镜像名称:
nvcr.io/nvidia/k8s/container-toolkit:1.4.7-ubuntu18.04
nvcr.io/nvidia/gpu-operator:1.6.2
nvcr.io/nvidia/driver:460.32.03-ubuntu18.04
nvcr.io/nvidia/k8s/dcgm-exporter:2.1.4-2.2.0-ubuntu20.04
nvcr.io/nvidia/k8s-device-plugin:v0.8.2-ubi8
nvcr.io/nvidia/gpu-feature-discovery:v0.4.1
nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda10.2
zhu733756
跑你的例子的时候报错,是正常的吗?
2021-03-16 02:22:19.394090: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2021-03-16 02:22:19.650521: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2021-03-16 02:22:19.652326: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
Step 0 (epoch 0.00), 21.3 ms
Minibatch loss: 8.335, learning rate: 0.010000
Minibatch error: 85.9%
Validation error: 84.6%
Step 100 (epoch 0.12), 3.9 ms
Minibatch loss: 3.231, learning rate: 0.010000
Minibatch error: 3.1%
@zhu733756 你好,请问下这块安装的nvidia_dcgm_exporter和cc里面的gpu-dcgm-exporter是同一个么?
gpu-dcgm-exporter这个pod总是error,
容器日志显示如下
gpu-operator 在选择GPU的时候,除了能选择gpu卡的数量,能指定使用哪张GPU卡吗
kubectl apply -f gpu-monitor.yaml 在用了这个命令对集群GPU进行监控的,为什么过一段时间后这个服务就回自动停止呢,我的yaml文件配置:
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: nvidia-dcgm-exporter
namespace: gpu-operator-resources
labels:
app: nvidia-dcgm-exporter
spec:
jobLabel: nvidia-gpu-resources
endpoints:
port: gpu-metrics
interval: 15s
selector:
matchLabels:
app: nvidia-dcgm-exporter
namespaceSelector:
matchNames:
tangpan 删除的原因是因为在gpu-operator检测到如果dcgmExporter.serviceMonitor.enable为false的话会自动删除该namespace下名为nvidia-dcgm-exporter的ServiceMonitor,很巧,你的ServiceMonitor就叫这个名称,如果换个名称就不会被删除了。或者采用如下方式通过gpu-operator开启这个ServiceMonitor。
kubectl edit clusterpolicies.nvidia.com cluster-policy修改如下部分开启ServiceMonitor,会自动给你创建出名为nvidia-dcgm-exporter资源
Ubuntu24.04先安装kubesphere后使用helm安装gpu operator进行GPU监控,但是在helm install这一步出现了问题:
# kubectl get pod -n gpu-operator-resources NAME READY STATUS RESTARTS AGE gpu-operator-7576dfc759-4mzms 0/1 Running 0 4s gpu-operator-node-feature-discovery-gc-67c749cbdf-8vdbk 0/1 CreateContainerConfigError 0 4s gpu-operator-node-feature-discovery-master-78d66d5695-bpj2x 0/1 CreateContainerConfigError 0 4s gpu-operator-node-feature-discovery-worker-zkbzr 0/1 CreateContainerConfigError 0 4s
Warning Failed 5s (x4 over 17s) kubelet Error: container has runAsNonRoot and image will run as root (pod: “gpu-operator-node-feature-discovery-gc-67c749cbdf-8vdbk_gpu-operator-resources(1b5febf5-2bac-4b74-9f09-1232a13c33a1)”, container: gc)
为什么会出现这个情况呢